Implicit Lyapunov Control for the Quantum Liouville Equation

نویسندگان

  • Shuang Cong
  • Fangfang Meng
  • Jianxiu Liu
چکیده

A quantum system whose internal Hamiltonian is not strongly regular or/and control Hamiltonians are not full connected, are thought to be in the degenerate cases. The most actual quantum systems are in these degenerate cases. In this paper, convergence problems of the multi-control Hamiltonians closed quantum systems in the degenerate cases are solved by introducing implicit function perturbations and choosing an implicit Lyapunov function based on the average value of an imaginary mechanical quantity. For the diagonal and non-diagonal target states, respectively, control laws are designed. The convergence of the control system is proved, and an explicit design principle of the imaginary mechanical quantity is proposed. By using the proposed method, the multi-control Hamiltonians closed quantum systems in the degenerate cases can converge from any initial state to an arbitrary target state unitarily equivalent to the initial state in most cases. Finally, numerical simulations are studied to verify the effectiveness of the proposed control method. The problem solved in this paper about the state transfer from any initial state to arbitrary target state of the quantum systems in degenerate cases approaches a big step to the control of actual systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implicit Lyapunov control of finite dimensional Schrödinger equations

An implicit Lyapunov-based approach is proposed for generating trajectories of a finite dimensional controlled quantum system. The main difficulty comes from the fact that we consider the degenerate case where the linearized control system around the target state is not controllable. The controlled Lyapunov function is defined by an implicit equation and its existence is shown by a fix point th...

متن کامل

Implicit Lyapunov control for Schrödinger equations with dipole and polarizability term

We analyze in this paper finite dimensional closed quantum systems in interaction with a laser field. The characteristic of the problem is that the interaction laser-system is modeled by a first order term (dipole coupling) and a second order term (polarisability coupling), that appear in the Hamiltonian of the Schrödinger equation. In order to determine the control, an implicit Lyapunov trajec...

متن کامل

New classes of Lyapunov type inequalities of fractional $Delta$-difference Sturm-Liouville problems with applications

‎In this paper‎, ‎we consider a new study about fractional $Delta$-difference equations‎. ‎We consider two special classes of Sturm-Liouville problems equipped with fractional $Delta$-difference operators‎. ‎In couple of steps‎, ‎the Lyapunov type inequalities for both classes will be obtained‎. ‎As application‎, ‎some qualitative behaviour of mentioned fractional problems such as stability‎, ‎...

متن کامل

Implicit Lyapunov Control of Multi-Control Hamiltonians Systems Based On the State Error

In the closed quantum system, if the control system is strongly regular and all other eigenstates are directly coupled to the target state, the control system can be asymptotically stabilized at the target eigenstate by the Lyapunov control based on the state error. However, if the control system is not strongly regular or as long as there is one eigenstate not directly coupled to the target st...

متن کامل

Designing a hybrid quantum controller for strongly eigenstate controllable systems

 In this paper, a new quantum hybrid controller for controlling the strongly eigenstate controllable systems, is designed. For this purpose, a Lyapunov control law is implemented when the target state is in reachable set of the initial state. On the other hand, if the target state is not in the reachable set of the given initial state, based on Grover algorithm, a new interface state that the t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1212.3416  شماره 

صفحات  -

تاریخ انتشار 2012